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ABSTRACT

This paper presents a method to statistically predict peaks, troughs, and

peak-to-trough excursions of waves in finite water depth such as waves in

harbors, bays, and near-shore and offshore seas. The probability density

functions are developed based on the concept that waves in finite water depth

are a non-Gaussian random process with parameters which depends on the sea

severity and water depth. As an example of application of the present method,

numerical computations are carried out for water depth of 8.8 m (28.8 ft) in a

sea of significant wave height 3.2 m (10.4 ft). The results of computation

show that the newly-developed probability density functions of peaks and

troughs both reasonably agree with the histograms constructed from measured

data obtained during the ARSLOE Project.
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INTRODUCTION

In the past two decades considerable attention has been given to

statistical prediction of wind-generated wave characteristics of random seas

in the ocean; however, relatively little is known of wave characteristics in

finite water depth such as harbors, bays, etc. In general, wave time

histories observed in finite water depth areas show a definite excess of high

crests and shallow troughs as demonstrated in Figure 1(a) in contrast to wave

profiles observed in deep water (see Figure Ib). The skewness of wave

profiles observed in finite water depths is associated with the non-linear

characteristics of the waves, and it depends on water depth and sea severity.

From the stochastic viewpoint, waves in finite water depth cannot be

considered as a Gaussian random process. Therefore, currently available

methods for predicting wave heights based on the concept of a Gaussian random

process (which is applicable for predicting ocean wave heights) is no longer

valid for probabilistic prediction of wave heights in finite water depth. The

results of analysis carried out on wave data obtained during a storm at Duck,

North Carolina, for water depths ranging from 1.4 m (4.4 ft) to 24.4 m

(80.0 ft) have indicated that the probability distribution of the wave profile

deviates substantially from the normal (Gaussian) probability distribution,

and that the probability distribution of wave heights (peak-to-trough

excursions) does not follow the Rayleigh probability law even for waves

measured at a relatively deep location, 24.4 m when the sea state becomes

severe (Ochi et al. 1982).

Hence, it is highly desirable to develop a method for predicting heights

of waves in finite water depth based on the concept of a non-Gaussian random

process. It is also noted that the magnitude of peaks of waves in finite
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water depth is much greater than that of troughs, in general. Therefore, for

waves in finite water depth, probabilistic characteristics of peaks and

troughs should be evaluated independently in contrast to the prediction method

for ocean waves in which probabilistic characteristics of peaks and troughs

are assumed to be the same.

Several studies have been carried out recently on the probability

distribution of wave heights for waves in finite water depth. Thompson

(1980), Arhan and Plaisted (1981), Tayfun (1980) (1983), Thornton and Guza

(1983), and Huang et al. (1983) developed methods for predicting wave

heights. However, the probability density functions derived in these studies

are not based on the non-Gaussian random process concept; instead, the

probability distributions are developed based on some assumptions. For

example, waves are expressed as a Stokes expansion to the second and third

order components. On the other hand, Bitner (1980) developed a probability

density function applicable for wave heights based on the non-Gaussian random

process concept. In her development, however, peaks and troughs are assumed

to be equal, and the probability density function is not given as a function

of water depth.

The purpose of the present study is to develop a method to statistically

predict peaks, troughs, and peak-to-trough excursions of waves in finite water

depth such as waves in harbors and bays, and near-shore and offshore seas.

The development of the probability density function necessary for prediction

is based on the concept that waves in finite water depth are a non-Gaussian

random process with parameters which depend on the sea severity and water

depth. That is, the limiting sea severity (significant wave height) above

which the waves are considered to he a non-Gaussian random process is first

evaluated as a function of water depth. Then, the magnitude of peaks (or
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troughs, or peak-to-trough excursions) of waves categorized as a non-Gaussian

random process can be predicted by applying a newly-developed probability

density function assuming that the wave spectrum is narrow-banded.

The paper consists of three sections. The first section outlines the

probability function applicable to a non-Gaussian random process originally

developed by Longuet-Higgins (1963). From analysis of more than 500 wave

records measured at various water depths during the growing stage of storm in

the ARSLOE Project, it was found that two parameters involved in the

Longuet-Higgins probability density function are significant for predicting

wave characteristics in finite water depth, and these two parameters are

expressed as a function of sea severity (significant wave height) and water

depth. The second section discusses the method for predicting peaks and

troughs as well as peak-to-trough excursions of waves in finite water depth

developed based on the non-Gaussian probability function, and the third

section presents the application of the prediction method developed in the

present study for estimating peaks, troughs, and peak-to-trough excursions of

waves in a given sea severity (significant wave height) at a specified water

depth. Numerical computations are carried out for water depths of 8.8 m

(28.8 ft) and the results are compared with data measured during the ARSLOE

Project.

PROBABILITY FUNCTION OF NON-GAUSSIAN RANDOM PROCESSES

As stated in the Introduction, wind-generated random waves in finite

water depths are considered to be a non-Gaussian random process. The
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probability functions representing a non-Gaussian random process have been

developed from two different approaches; one based on the probability theory

(Gram-Charlier series, see Cramer 1946, Edgeworth 1905, and Longuet-Higgins

1963), the other based on the approximation that waves are expressed as a

Stokes expansion to the 2nd and 3rd components (Tayfun 1980, Huang and Long

1980, and Huang et al. 1983). The former approach does not include any

assumption and all probability distribution functions are given in the form of

a series. These probability functions are similar; in particular, the

probability functions derived by Edgeworth and Longuet-Higgins are the same

and they appear to be more accurate than that derived by Gram-Charlier.

Hence, in the present study, the non-Gaussian probability density function

derived by Longuet-Higgins will be applied in analyzing wave data obtained in

finite water depths.

Let the wave deviation from the mean (namely, wave profile) be X. The

probability density function of X is given as follows (Longuet-Higgins 1963):

2

1 02 A 3 'A

f(x) - e 22 1 + H H4  -- +-. H5 ()

2X X
+ 2 H (1) + 3 4 -H +

2! (3!)2 6 a 2! (3!) (4!) 7
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where, 02 = variance of x

A3  = K 3/(K2) 1.5

X4 = 4/,2 2

A5  K 5 /(< 2 )2.5
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ki - cumulants

k2  i m 2 - m 1
2 = variance

k3 = m 3 - 3m 2ml + 2m 1
3

k m42m i 4 m- 3m2 3- 1 + 12m2m1
2 - 6m14

k5 = m 5 - 5m4 m I - lOm3 m 2 + 20m3ml
2

+ 30m 2
2m 1 - 60m2m13 + 24m15

mj = j-th moment of the probability density function

( = Hermite polynomial of degree j

Note that X3 is called the skewness of the random variable X and is

equal to the kurtosis minus 3. The values of X3 and X4 may be positi IQ

well as negative in general; however, positive X3 are observed for mosL wave

profiles in finite water depths.

The following remarks are made on the probability density function given

in Equation (1):

(1) The probability density function f(x) at times becomes negative for large

negative x-values depending on a-values. However, this should not cause any

serious trouble, in practice, since the x-values where f(x) becomes negative

are usually outside the range of x where the histogram exists as will be shown

later.

(2) Generally speaking, the accuracy of a function which is expressed in the

form of a series increases with increase in higher order terms. However, this

is not the case for the probability density function given in Equation (1).

The results of comparison between histograms and the probability density

function have shown that higher order terms do not necessarily yield better

agreement (Honda and Mitsuyasu 1976, Ochi et al. 1982). Therefore, it is

highly desirable to examine terms of the series which significantly contribute

to the distribution.
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To substantiate the statement given above, Figure 2 was prepared. The

figure shows an example of a comparison of the probability density function

given in Equation (1) with a histogram of the wave profile obtained at a water

depth of 1.35 m (4.43 ft) in a severe storm of significant wave height of

2.05 m (6.72 ft). The data were obtained during a storm in the ARSLOE Project

by the Coastal Engineering Research Center at Duck, North Carolina. The

example shown in Figure 2 was chosen since the contribution of each parameter,

X3 ' X4 , etc., is pronounced because of the extremely shallow water depth.

It can be seen in Figure 2 that,

(1) The histogram deviates substantially from the normal probability

distribution.

(2) The probability density function computed by taking various terms of

Equation (1) become negative for large negative x. However, the magnitude of

the negative probability density is relatively small, on the order of less

than two percent. Furthermore, the negative probability density occurs

outside range of the histogram. Hence, it will not cause any serious problem

in practice if we assume this negative probability density to be zero, and, in

turn, the entire probability density function is normalized such that the area

of the density function becomes unity.

(3) The probability density function representing the first two terms which

includes the parameter X3 agrees reasonably well with the histogram.

(4) The agreement with the histogram becomes poor if the term with the

parameter X3
2 is included in addition to the X3-term in the probability

density function. Although it is not shown in the figure, the same trend is

obtained if the term with the parameter X4 is included in addition to the

X3-term in the probability density function.
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(5) The probability density function consisting of terms with the parameters

A 3 2, and X4 agrees well with the histogram.

(6) The addition of the parameter X5 to the probability density function does

not yield any appreciable change in the shape of the probability density

function.

The same trend was observed for many other wave records obtained at

various water depths in various sea severities (Ochi and Wang 1984); hence, we

may safely conclude that the parameter A3 which represents the skewness of the

wave profile is the dominant parameter affecting the non-Gaussian

characteristics of waves in finite water depth and that the combination of the

parameters X31 X32' and X4 best represents the non-Gaussian probability

density function given in Equation (1). The combination of the parameters X3

and X3 2 or the combination of the parameters X3 and X4 do not yield

satisfactory agreement between the histogram and the non-Gaussian probability

density function.

Based on the above-mentioned conclusion, only the two parameters A3 and

4 involved in the non-Gaussian probability density function are considered in

predicting heights (peak-to-trough excursions) of waves in finite water depth.

In general, the non-Gaussian characteristics of wind-generated waves

depends not only on water depth but also sea severity. Even though the water

depth is finite, waves may be considered to be a Gaussian random process if

the sea state is mild. Therefore, for a given water depth, it may be of

considerable interest to examine the limiting sea severity below which

wind-generated waves are considered to be Gaussian. For this, non-Gaussian

analyses were carried out on more than 500 wave records obtained during a

storm in the ARSLOE Project, and the fcrmulae for evaluating the parameters X3

and X4 were derived as a function of water depth and sea severity (Ochi and

Wang 1984). That is, the parameter X3 can be evaluated by,
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1.10 e 0 .39h H 0.74 h0 6 2 2)

where, h = water depth in meters

Hs = significant wave height in meters

Furthermore, wave records as well as histograms of the wave profile were

examined to find the minimum significant wave height above which the

non-Gaussian characteristics were observed. The results are shown in Figure 3

together with the curves indicating various X3-values as a function of water

depth computed by Equation (2). As can be seen in the figure, the minimum

significant wave height above which non-Gaussian characteristics are observed

agrees well with the curve for which the parameter X3 is equal to 0.2. Hence,

we may conclude that waves in mild seas for which the parameter X3 is less

than 0.2 can be considered as a Gaussian random process.

It was also found from the analysis that the parameter X4 can be

expressed approximately as a function of X3 as shown in Figure 4. The average

curve drawn in the figure is expressed by the following formulae:

-0.15 + 1.10 (A3 - 0.20)1.17 for 0.2 < X < 0.5

4
-0.15 + 1.10 (A 3 - 0.20)1.17 + 1.48 (X3 - 0.50)1.47

for A3 > 0.5

(3)

In summary, waves for a given water depth may be considered as a Gaussian

random process in mild sea conditions if the parameter X3 evaluated by

applying Equation (2) is less than 0.2; however, in severe seas for which the
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parameter X3 is greater than 0.2, waves must be considered as a non-Gaussian

random process represented by Equation (1) consisting of terms containing the

parameters X3, X32, and X4 ' The parameter X4 can be evaluated by Equation

(3).

PROBABILITY FUNCTIONS OF PEAKS AND TROUGHS

One of the most distinct statistical characteristics of waves in finite

water depths is that the wave profile does not follow a Gaussian distribution

as discussed in the previous section; and hence, the statistical properties of

the positive part of the wave profile are different from those of the negative

part. This implies that the probability functions applicable for peaks and

troughs are different and should be derived independently. We first consider

the probability density function for the peaks.

Let us assume that a wave spectrum is narrow-banded and hence there

exists only a single peak during every half-cycle period. Then, the

probability that the peak, which is a random variable denoted by + , exceeds

a specified level E+ is given as the expected value of the ratio of number of

peaks exceeding the level E to the number of peaks on the positive domain.

That is,

_N + N+

Pr+ > E = 1 - F(+) = E[ --] + (4)
+

where, F(E+) + cumulative distribution function of +

N number of peaks exceeding a level + per unit time

9



N+ = number of peaks on the positive domain per unit time

N+ = expected value of N

N+ = expected value of N+

It is noted that the expected value E[N +/N+ is equal to the ratio of

the individual expected values, denoted by NE+ and N+, respectively, only if

we assume that the random variables (NE+/N+) and N+ are statistically

independent. This assumption, however, appears to be acceptable for

wind-generated waves, in general. The expected values NE+ and N+ can be

evaluated from the joint probability density function of displacement and

velocity as follows:

N = J xi f(%+,x) dx (5)

N+= Ixi f(O,x) dx

From (4) and (5), the probability density function E+ can be derived as,

Sdx
d + -. ( +X)

f(E+) = W4- (6)

1 IxI f(0,x) dx

In the joint probability density function of displacement x and velocity

x , it is assumed that,

(i) The displacement x has a non-Gaussian probability distribution given in

Equation (I) which is the product of a Gaussian distribution and a series

10



consisting of parameters X3, X4 , etc. which are associated with cumulants.

From the results of analysis on the effect of parameters on the probability

density function presented in the previous section, the terms with parameters

X 32, and X4 in the series involved in the equation are considered in the

following analysis.

(ii) The velocity x has approximately a Gaussian distribution with zero mean

2
and variance a' . Results of statistical analysis of velocity obtained from

x

differentiating measured wave profile have indicated that the velocity obeys

approximately the Gaussian distribution. Examples showing comparisons between

the histogram and the Gaussian distribution of velocities are shown in Figure

3. The figure pertains to waves at a water depth of 3.70 m (12.1 ft) in a sea

of significant wave height 2.45 m (8.04 ft).

(iii) The displacement and velocity are statistically independent. The

results of analysis carried out on measured wave profiles and velocities

obtained by differentiating the profile have shown that the magnitude of the

correlation coefficient is small (on the order of 0.2 or less) irrespective of

water depth and sea severity.

Taking these three conditions into consideration, the probability density

function of peaks can be obtained from Equations (5) and (6) as follows:

=x x +  "4( ) +A ()2

x +- T! H" a) +  4.!)3( 4( +)+7

a0 x +<x



where, L = I + 5 A2

3! 24 3

The above probability density function reduces to the well-known Rayleigh

probability density function if the parameters X3 and X4 are zero which

represents a Gaussian random process. It is noted that in order to let the

probability density function be zero for 0, the Hermite polynomial

H2(U) is modified such that it becomes zero for small E+. That is,
x

2

I for I

H2(0) (8)
x 0 for a < 1

For the probability density function specifically applicable to peaks, it

is necessary to consider the variance which is affiliated with the positive
2

part (upper portion) of waves, denoted by a " This can be evaluated by

taking the second moment of the probability density function of the wave

profile, f(x), truncated at x = 0. That is,

x x2 f(x) dx

a = o (9)

J f(x) dx
0

By applying the probability density function given in Equation (1), the

variance a02  is given as a function of the parameter . That is,x+V

2 6V'T + 242 A 3= - 3 (10)
x+ l- - 2V2 X 3 x

12



The probability density function of troughs of a non-Gaussian random

process can be derived through the same procedure as is used for the

probability density function of peaks. The form of the probability density

function of peaks is the same as given in Equation (7) except should be

02negative and the variance G applicable for the negative part (lower portion)X--

of waves is given by,

0o2~~ = - 2 f(x)dx =<6 -221)2 (l

2- xo 6Vi -J2 X3  2

I f(x) dx 6/7+

Next, we evaluate the peak-to-trough excursions that wave peaks, E+, and

troughs, &_, are statistically independent. By denoting the probability

density functions of peaks and troughs by f&+(&+) and f_(O_), respectively,

the probability density function of peak-to-trough excursions can be obtained

by the following convolution integral:

W
f(m) = f+(+) ' fE_( - &+) d + 0 < < (12)

0

where, K is a constant associated with the normalization and it is given by,

K = I f(E) d (13)
0

The significant wave height and extreme wave height can now be evaluated

from Equation (12). That is, the significant wave height, denoted by HS, is

given by,

13



HsI f(E) d& (14)s3 E *

where, E* is the value which satisfies the following relationship:

*2

f () d 1= (15)
0

The probable extreme wave height in n-waves, denoted by Z, which is the

modal value of the n-th order probability density function is given as the

value which satisfies the following equation:

f(E) d& = - (16)
0 n

EXAMPLE OF APPLICATION

Prior to presenting an example of application of the method for

predicting peaks, troughs, and peak-to-trough excursions (including extreme

values) of waves in finite water depth, it may be well to summarize the

computation procedure in the following:

Suppose we want to predict extreme wave heights in a sea of significant

wave height, Hs (in meters), at a location where the water depth is known as h

(in meters). First, an evaluation is made to identify whether or not waves in

the specified sea can be considered as a Gaussian rindom process at this

location. This can be done either by computing the skewness 3 by Equation

(2) or by referring to the limiting line for the Gaussian random process given

in Figure 3. If A3 is less than or equal to 0.2, then the sea can be

14



considered to be a Gaussian random process, and hence the prediction can be

made by applying the commonly known method for evaluating wave heights in deep

water.

If the sea is considered to be a non-Gaussian random process, then the

following iteration method is used:

* Evaluate X4 from Equation (3).

2
" An as initial value of the variance, compute a = (H s/4) 2 and

2 2
evaluate a and a by Equations (10) and (11), respectively.

* Compute the probability density function f( +) and f(&_) by Equation

2 2
(7) with a3, and a4, and ax+ or Ox_, respectively.

* Compute the probability density function of the peak-to-trough

excursions by Equation (12), and then evaluate the significant wave

height by Equation (14).

* Compare the computed significant wave height with the specified

value, Hs . Iterate the procedure until these two values agree.

* Significant value and extreme value for the peaks and troughs are

evaluated from the final probability density functions.

The iteration method is required, since the relationship between the
2

significant wave height and variance, a , which is necessary for computing
x

the probability density function is not known for waves in finite water

depth. By applying the iteration method, the variance can be evaluated.

As an example of application, computations are carried out for waves at a

water depth of 8.8 m (28.8 ft) in a sea of significant wave height 3.18 m

(10.4 ft), and the results are compared with the measured data obtained during

the ARSLOE Project as shown in Figures 6 through 8. Included also in these

figures is the Rayleigh probability distribution which is commonly used for
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predicting waves in deep water. As can be seen in Figure 6 which shows a

comparison of peak values, the probability density function computed by

Equation (7) reasonably agrees with the histogram constructed from measured

data, while the Rayleigh probability density function substantially

underestimates the peak values. On the other hand, the Rayleigh probability

distribution overestimates the magnitude of troughs to a great extent as is

shown in Figure 7. Figure 8 shows a comparison for the peak-to-trough

excursions. As can be seen, for the peak-to-trough excursions, the

differences between histogram, Rayleigh probability distribution, and the

newly-developed probability distribution is less pronounced than that observed

for the peaks and troughs, independently.

A comparison of predicted and measured significant values as well as

extreme values for peaks, troughs, and peak-to-trough excursions is tabulated

in Table 1. It is noted that the predictions are made for the same sea

severity as the measured one. Hence, the measured and predicted significant

values of the peak-to-trough excursions (significant wave heights) are

identical. As can be seen in the table, the predicted values computed by the

present theory agree reasonably well with the measured values. However, there

is a substantial difference between measured and predicted values computed by

applying the Rayleigh probability distribution. It is clear from these

results that the probabilistic prediction of peaks and troughs of waves in

finite water depth must be based on the concept of the non-Gaussian random

process.
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CONCLUSIONS

This paper presents a method to statistically predict peaks, troughs, and

peak-to-trough excursions of waves in finite water depth such as waves in

harbors, bays, and near-shore and offshore seas. The probability density

functions are developed based on the concept that waves in finite water depth

are a non-Gaussian random process with parameters which depends on the sea

severity and water depth.

For predicting statistical characteristics (including extreme values) of

waves at a given water depth, a method is developed to identify whether or not

waves in the specified sea can be considered as a Gaussian random process at

the location. If the sea is considered to be a non-Gaussian random process,

then the probabilistic characteristics can be evaluated by applying

newly-developed probability density functions.

As an example of application of the present method, numerical

computations are carried out for water depth of 8.8 m (28.8 ft) in a sea of

significant wave height 3.2 m (10.4 ft). The results of computation show that

the newly-developed probability density functions of peaks and troughs both

reasonably agree with the histograms constructed from measured data obtained

during the ARSLOE Project. The Rayleigh probability density function which is

commonly used for predicting waves in deep water substantially underestimates

the magnitude of peaks and overestimates the magnitude of troughs for this

example.
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NOMENCLATURE

f( ) probability density function

F( ) cumulative distribution function

h water depth

H.( ) Hermite polynomial of degree j

Hs significant wave height

K normalization factor

L normalization factor

mj j-th moment of the probability density function

N+ number of peaks on the positive domain per unit time

N+ expected value of

N + number of peaks exceeding a level + per unit time

N+ expected value of N

Kcumulant

X 3 scewnes3

X 4 kurtosis - 3.0

-, peak or trough (random variable)

peak

trough

E-value for which the probability of exceeding the value
is one-third

probable extreme value

2
" variance of wave displacementx

2
" X+ variance which is affiliated with the positive part of

waves

2
" variance which is affiliated with the negative part of

waves
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Table 1 Comparison of observed and predicted

significant and extreme values

PEAKS TROUGHS PEAK-TO-TROUGH
EXCURSIONS

SIGNIFICANT VALUE

Observed 2.06 m 1.27 m 3.18 m

Predicted by
Present theory 2.15 1.34

Rayleigh 1.61 1.61
distribution

EXTREME VALUE

Observed 3.32 m 1.73 m 5.04 m

Predicted by

Present theory 3.79 1.74 4.81

Rayleigh
distribution 2.55 2.55 5.11



(a) Coastal waves

(b) Ocean waves

Figure 1 Comparison of coastal and ocean wave profiles
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Figure 2 Comparison between observed histogram, Gaussian distribution
(heave line),and non-Gaussian distribution: Water depth 1.4 m,
significant wave height 2.1 m
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Figue 5Comparison of wave velocity histogram and Gaussian
distribution Water depth 3.7 m, significant wave
height 2.4 m
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Figure 6 Comparison between observed histogram of peaks, Rayleigh
distribution, and the newly-developed probability
distribution: Water depth 8.8 m, significant wave height
3.2 m
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Figure 7 Comparison between observed histogram of troughs,
Rayleigh distribution, and the newly-developed
distribution: Water depth 8.8 m, significant wave

height 3.2 m
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significant wave height 3.2 m
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